Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents.
نویسندگان
چکیده
The water-soluble endohedral gadofullerene derivatives, Gd@C(60)(OH)(x) and Gd@C(60)[C(COOH)(2)](10), have been characterized with regard to their MRI contrast agent properties. Water-proton relaxivities have been measured in aqueous solution at variable temperature (278-335 K), and for the first time for gadofullerenes, relaxivities as a function of magnetic field (5 x 10(-4) to 9.4 T; NMRD profiles) are also reported. Both compounds show relaxivity maxima at high magnetic fields (30-60 MHz) with a maximum relaxivity of 10.4 mM(-1) s(-1) for Gd@C(60)[C(COOH)(2)](10) and 38.5 mM(-1) s(-1) for Gd@C(60)(OH)(x) at 299 K. Variable-temperature, transverse and longitudinal (17)O relaxation rates, and chemical shifts have been measured at three magnetic fields (B = 1.41, 4.7, and 9.4 T), and the results point exclusively to an outer sphere relaxation mechanism. The NMRD profiles have been analyzed in terms of slow rotational motion with a long rotational correlation time calculated to be tau(R)(298) = 2.6 ns. The proton exchange rate obtained for Gd@C(60)[C(COOH)(2)](10) is k(ex)(298) = 1.4 x 10(7) s(-1) which is consistent with the exchange rate previously determined for malonic acid. The proton relaxivities for both gadofullerene derivatives increase strongly with decreasing pH (pH: 3-12). This behavior results from a pH-dependent aggregation of Gd@C(60)(OH)(x) and Gd@C(60)[C(COOH)(2)](10), which has been characterized by dynamic light scattering measurements. The pH dependency of the proton relaxivities makes these gadofullerene derivatives prime candidates for pH-responsive MRI contrast agent applications.
منابع مشابه
Gold nanoparticles functionalised with stable, fast water exchanging Gd3+ chelates as high relaxivity contrast agents for MRI.
Gold nanoparticles functionalized with Gd(3+) chelates displaying fast water exchange, superb pH stability and inertness towards transmetalation with Zn(2+) have been prepared and characterized as a new high relaxivity (29 mM(-1) s(-1), 30 MHz, 25 °C) contrast agent potentially safe for in vivo MRI applications. The Lipari-Szabo treatment for internal rotation was used to evaluate the effect of...
متن کاملDual MR-PET probe for quantitative, noninvasive high resolution pH mapping
Introduction MR contrast agents act indirectly to relax water protons. The efficiency of contrast agents with respect to relaxation is termed relaxivity (r1 = Δ(1/T1)/[Gd]) and depends on a number of molecular parameters including the hydration state of the molecule and its molecular reorientation rate. These molecular parameters can sometimes be altered by environmental factors such as pH chan...
متن کاملA New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite
Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...
متن کاملHighly relaxing gadolinium based MRI contrast agents responsive to Mg2+ sensing.
A Gd complex based on a polyphosphonated pyridyl ligand shows a very high stability in aqueous solution (log K(EuL) = 25.7), a high relaxivity (8.5 mM(-1) s(-1) at 25 °C and 20 MHz) and a marked and selective relaxivity enhancement (37%) in the presence of Mg(2+), opening interesting perspectives for the design of cation responsive contrast agents.
متن کاملGadofullerenes and Gadonanotubes: A New Paradigm for High-Performance Magnetic Resonance Imaging Contrast Agent Probes
In this review, the physicochemical properties and biomedical applications of Gd@C60 (gadofullerenes) and Gd@Ultra-short Single-walled carbon nanotubes (gadonanotubes) are discussed, especially in regard to the unique benefits of this novel class of materials for Magnetic Resonance Imaging (MRI). The introduction of carbon nanotechnology into biomaterial science has created great opportunity fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 127 2 شماره
صفحات -
تاریخ انتشار 2005